Seminar Series on Graph Neural Networks 03
A graph signal processing viewpoint
of graph neural networks

Yong-Min Shin
School of Mathematics and Computing (Computational Science and Engineering)

Yonsei University
2025.04.14

ASHHIASHE (HIAFIIOFOF G A
S| LB (A LHrera sy III L (A] P
S

School of Mathematics and Computing

(Computational Science and Engineering) Gwangju Institute of Science and Technology

Before going in....

Wrap-up: Message passing all the way up
(Up-to-date comprehensive survey on GNN archtiectures)

Towards application of graph neural networks

Towards efficient graph learning Explainable graph neural networks

Fundamental topics on graph neural networks

On the representational power of graph A graph signal processing viewpoint of On the problem of oversmoothing and
neural networks graph neural networks oversquashing

Introduction to graph mining and graph neural networks
(Basic overview to kick things off)

* Presentation slides are available at: .
(Some of the topics may change in the future for a better alternative) (jordan7186.github.io/presentations/) |m =

Preliminary: Singal processing (3bluelbrown)

Understanding of graph signals & graph Fourier transform
Understanding the formulation of ChebNet

Re-reading GCN, understanding in the original author’s way

AW

Preliminary: Signal processing

Signal processing & filtering

Pressure
Observed signal

Fourier transforms can be used to analyze signals

Signal 1

Observed signal
with multiple frequencies

Signal 2 I

Signal 3 TN N T N NS N N T T e Individual signals
with single frequencies

Signal 4

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

Signal processing & filtering °

Time domain Frequency domain

Intensity

Fourier transform

Fourier transform

[
»

F©) = [seeicar

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

Signal processing & filtering

Intensity

3 beats / sec

Time

0.20 cycles / sec
0.5 cycles / sec
3 cycles / sec

Observation
Something unique happens when the winding
frequency exact/y matches the signal frequency

How to measure this?

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

Signal processing & filtering °

Measurement of the distance between the
@ : Center of mass origin and center of mass

Imagine winding the wave in a circle in a 2D plane in different frequencies

f(t)e—sz'Ct

r —2mi(t
Measurement of the distance between the origin and center of mass » f(C) - f(t)e Tetdt

1 —omiCt
_ 1WA dt
Z /R F(t)e

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

Low-pass filtering

Intensity %Intensity
AY\//\T "II— /}\ f /I\ -Jl" 4‘?/-\\/:_ /I\ —ll\//\’

Time

1. Fourier transform 3. Inverse Fourier transform

>

Frequency

*David | Shuman et al., The Emerging Field of Signal Processing on Graphs EQUALIZER

20 25 32 40 50 63 801 100 125 160 200 250 400 500 630 8k 125k 4k 5k 83k 8k 10k 20k

Gaussian-Filtered
Original Image Noisy Image (Std. Dev. = 1.5)

»"

=128 65 R0 128 :3R 1168 20RO kR 3I5E 3Tk ke 8 0 [5E oIk k56,3 Bk 0lke1 2 k6 kST 6 K20 K

g Ly
NS o & 7 - =
| S AR 5 - S 2 o~

MIN MAX HIGH PASS EQ BYPASS POWER POWER

LEVEL

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

Additional linear algebra: Spectral decomposition

Spectral Decomposition

m The expression - * When decomposing the (symmetric) adjacency
A= PDP matrix, the eigenvalues are real.

: s . . i I Il .
is called the spectral decomposition of A. We can write it as The eigenvalues are usually ordered

- . A=A > 2N,

A1 0 0 . "
)-<+T
0 A O 0 L . . .
ng We can also rearrange in an ascending order, just
A=x % Xn | 0 0 _ swap the corresponding eigenvectors accordingly.
i 0 O 0 X] B

Dr. Ceni Babaoglu cenibabaoglu.com

Linear Algebra for Machine Learning: Singular Value Decomposition and Principal Component Analysis

Slide from: https://www.slideshare.net/CeniBabaogluPhDinMat/5-linear-algebra-for-machine-learning-singular-value-decomposition-and-principal-component-analysis-147828329

Understanding of graph signals & graph Fourier transforms

11

How should we think of signals on graphs?

We will consider a simple 1D node features, which can be easily extended to muti-dimensional case

We can imagine assigning a single value to each vertex
Think of 1-dimensional feature matrix as a function

l P l i0121456789
Yoo o 13)

Fig. 1. A random positive graph signal on the vertices of the Petersen graph.
The height of each blue bar represents the signal value at the vertex where
the bar originates.

Generalization of Fourier transforms to graphs

A GRAPH FOURIER TRANSFORM
AND NOTION OF FREQUENCY
The classical Fourier transform

]'z\‘(é;) = <f, e2m’§t> — ff(t)e—2ﬂiftdt
R

is the@gxpansion of a function £ in terms of the@omplex exponen-

tials, which are the eigenfunctions of the one-dimensional (1-D)

leace operator

Fourier transform = Inner product with some function
Some function = complex expoenetials?

®

Some function = Eigenfunction of the Laplace operator

A = @ i ﬁ|€27m'§t . _(27T€)2€27Ti§t

A

Eigenfunction

Roughly, the Laplace operator measures the
local difference between the function and average.

Generalization of Fourier transforms to graphs

Conclusion of the previous slide:
Fourier transform is the inner product between the target function and the eigenfunction of the Laplace operator.

. r Graph Laplacian 2
Graph signal!
(# of nodes = N) Laplace operator measures the
local difference between the function and average.
: 2 L=D-A
Analogously, we/can define the graph Fourier transform f of any

function|f e R"|on the vertices of G as the expansion of f in terms

of the eigenvectors of the graph Laplacian: '&
’ N . * /e
f(A) =, ur)= D F@)u(d). (3) g ~—/~_
i=1

This part is the
same from before

® ® ® © 4 o w 4 .
® ® ©® © A4 N ©® o .
® © © © & LN NN
b ha A W e ® & ©® ©
hw e N L e ® ® ©® ©
N e L e ® & ©® ©
w LWL L e e e e ®

4 -1
1 3
1 1
1 0
o R |
2 [
° °
2 [
° °

This part is
different because

now its discrete And we can just get the eigenvectors of the graph
Laplacian via spectral decomposition.

15

Complementary note 1. On the physical intuition of the graph Laplacian

Why is Laplacian related to measuring the difference between the function and average?

Need some further generalizations of mathematical concepts... “Discrete calculus”

Definition 1. Edge derivative at e=(i, j)

M = 1) -)

)

Oe

We can calculate the fotal variation of the whole graph as

¥ the sum of local variation (squared) for all nodes in the graph:
Definition 2. Graph gradient at vertex / 1 5
y 52 > (F) — F(@))
V.f = {— } i€V jEN;
de li for some edges from ¢ which is
2 fref
Definition 3. Local variation at vertex /
B 5 1/2S0 we can at least understand why the graph Laplacian is useful to
af capture the patterns of the graph signal. It measures how much the signal
| |sz| |2 = E a— differs locally, eventually containing all information on variation of signals.
€l

for some edges from 1

- 1/2

Complementary note 2: Analogy of eigenfunctions across frequencies

Used to capture macro-patterns

1

Eigenfunction represents slow-oscillating patterns (low frequency)

M 4 Lower

2T YElt
/\/\/\/\/\/\/\/ The eigenfunction of the Laplacian
VAVAVAVAVAVAVAVAVAVAVAVAVAVARR 3.0

Eigenfunction represents fast-oscillating patterns (high frequency)

4

Used to capture micro-patterns (details / noise)

/s this also analogous to graph Fourier basis?

Complementary note 2: Analogy of eigenfunctions across frequencies

Al c RQXQ

El c R9><9

17

Concrete example 1

; Spectral Decomposition

m The expression

A= PDPT
is called the spectral decomposition of A. We can W.Tgit as

G L= L =UAY

X
A=[R % - % | 2
By 0 oT
0 o 0 A "
<] 1 1 1 1 e 2] e 1}
1 (2] 1 e 1 2] (2] e (2]
Dr. Ceni Babaoglu
1 1 o 0 1 0 0 0 0 Linear Algebra for Machine Learning: Singular Value Decomposition and Principal Component Analysis
1 (2] 2] (2] 1 e (2] e (2]
1 1 1 1)))) ") —2.76e-18 e e e =1.35e-16 e 9.447 25
] -]) -] e) 1 1 1 -0.289 9.224 e.707 2] =] 2] 9.408 2] 9.447 25
2]] 2] -]) 1)) 1 -9.289 0.224 -0.707 2] (2] 2] 0.408 e 9.447 16
(2]] 2]] 2] 1) 2] 1 -9.289 9.224 -5.67e-16 e e 2] -0.816 2] 0.447 16
e (2] 2] (2] 2] 1 1 1 (2] 9.866 0.224 2.8e-16 e e 2] -4.25e-16 2] 9.447 16
e e e -0.866 1.02e-16 4.96e-17 (2] 0.5 2] 4
4 N e e @ @ e [e 8.289 ©0.408 -0.707 3 8.5) 4
= 3 = @ = @ e @ @ e e e 0.289 9.408 e.707 (<] e.5 e 2]
e 2 e - e e e e 3 e e ©.289 -0.816 -1.6e-17 3 8.5 | o [J o |/ &
=al e (<] 2 =1l e <] e e .
" g > > 2 o o o o Matnx Of e|genvectors CorreSpOI’]dlng LOWGSt tWO
eigenvalues frequencies
e e (<] <] e 3 =al =1l =l .
(eigenvalues)
e e (2] (2] e -1 2 2] -1
e e e e e -1 e 2 -1 Notice that the trivial eigenpair reveal the most macro pattern in a graph:

e e e o @ -1 -1 -1 3 Number of connected compoents (“blobs”)

18

Complementary note 2: Analogy of eigenfunctions across frequencies

Concrete example 2

1) Notice that there is only one trivial eigenpair since
the graph is one giant connected component

U] Wp
Community 1 -8.153 0.866 -9.125 -1.16e-16 -1.06e-16 -4.25e-17 -9.27e-17 | 0.316]] 0.333 40
-0.153 -0.289 -0.125 9.599 8.376 0.116 9.391 9.316(] ©.333 25
-0.153 -0.289 -0.125 -08.599 -8.376 9.116 9.391 9.316(] 0.333 18.9
-8.153 -98.289 -0.125 -2.79e-16 3.94e-16 -8.233 -8.783 9.316(] ©.333 16
9.817 -3.39%e-15 0.421 8.45e-16 5.95e-16 -8.86e-18 -9.88e-17 | ©.212)) 6.333 16
-8.465 -4.44e-15 0.775 1.33e-15 1.05e-15 (%) 5.55e-17 -0.27]) 6.333 4
9.8873 1.35e-15 -0.231 9.217 -98.346 9.678 -90.201 -98.401) 0.333 4
9.8873 1.37e-15 -0.231 0.217 -98.346 -98.678 9.201 -90.401) 0.333 @.1e7
9.8873 1.34e-15 -0.231 -9.434 9.692 3.56e-16 5.62e-16 |-0.401) 0.333 U e A
Community 2 Lowest two
2) Still, also notice that the first non-trivial frequencies
eigenvectors returns a ‘soft’ community assignment, (eigenvalues)

<

which is the the next macro-pattern.
(HIGHLY incourage to read spectral clustering [1])

[1] Luxburg, A Tutorial on Spectral Clustering

Complementary note 2: Analogy of eigenfunctions across frequencies

Some further examples... (external slide)

Fourier Bases on Graphs

u, (1,=0) u, (1,=0.041) u,. (A,.=0.349)
1Y 2 2 10 10
. 6 1 6 0.1 5
Fourier Bases on Graphs . 08 4 m e 0.1
e Al 0.05 P gy ra®e s 0.05
2 06 2 1 = W0\ g :. I h 5% .
+ The “complex exponentials” in the graph domain 0 0 g Ww 0 0 & .'{_; 0
are the eigenvectors of L: [Shuman, 2013] 5 0.4) v, 1',’ 1 gV
i 3) ; : -0.0¢
Luy = A\gug, for k=1,...,N 4 02 4 / 0.05 ‘ \
6 6 4 01 - -5 -0.1
+ Compare: 0
-5 0 5 5 0 5 5 0 5

A 0% g Lug = Mu

frequency frequency
- As)\j increases, U varies more rapidly on the graph.

v
N

Slides from: Elif Vural, “Spectral Graph Theory and Graph Signal Processing”, 2021,
https://indico.truba.gov.tr/event/56/contributions/456/attachments/118/280/CizgeOkulu_ElifVural.pdf

...Coming back, completing the full graph Fourier transformation

Original domain (vertex)

Original domain (time) o) Go s
Intensity .-
) positive
f (Z) values l l J l
N I '
negative [
Fourier transform values

domain
f(&)., f(a).,
Freduency 05/1 152 25 3 35 4 45 5 (;(') 05 1 15'T2 25 3 35 4 45l5 % Yol 1
; A A, 4
Frequency domain : Low freq. ~ High freq.
v \%
Note that the smoothness of the first graph is reflected in the In the third graph, high signals of eigenvalue/frequencies
high signal of low eigenvalue/frequencies start to appear

* Low frequency = smooth, little variance * High frequency = rapid oscillation, high variance

...Coming back, completing the full graph Fourier transformation

Intensity

f(z) Send fin vertex space to frequency space
Time L - UAUT

L=D-A

(Graph) Fourier transform

fu) =< fou; >=UTf

Apply a filtering function /1o eigenvalues

)\0 0 h(AO) 0
function here) A= » WA= hE
0 AN-1 0 h(An-1)
fout(M) = F(A)h(N)
Frequency | Bandpass | Band-stop
Inverse (Graph) Fourier transform Send back to vertex space
Intensity fnew — U h (A.) UT f

Time

Image: https.//www.allaboutcircuits.comv/technical-articles/low-pass-filter-tutorial-basics-passive-RC-filter/

Understanding the formulation of ChebNet & GCN

22

Application of convolution (filters) to graphs

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

1. Spectral formulation: Extend the formulation of graph signal processing
2. Strictly localized filters: Design a local filter localized in K hop from the central vertex

CNNs were successful because of local parameterized filters

1x1 1xo 1x1 00 /Parameterized (Learnable) filter
0|1,/1/1|0 4
oxl OXO 1x1 1 1 10 |-1 3(0 (-3 Wi| W2 | Ws
O|l011(1110 2|0 (-2 10| 0 [-10 wa | ws | we
1|0 (-1 310 (-3 wr | ws | we

o 1 1 0 0 Sobel filter Scharr filter parameterized filter

| Convolved

mage

& Feature

v

/Localized = the kernel is smaller than the original space
(for example, in the left figure, the kernel is 3 by 3, which is smaller than the image 5 by 5)

onvolution theorem: Multiplication in the spectral space = Convolution in the original space

3. Low computational complexity: Expensive eigenvalue decomposition (spectral decomposition) is not needed

Image source. Left - https.//techblog-history-younghunjol.tistory.com/125 Right - https.//7anhreynolds.com/blogs/cnn.htm/

Localizing graph filters

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph in spectral domain

A

f()\l) Apply a filtering function Ato eigenvalues
o 0 h(Xo) 0 0o 0
A= - (A) = = Ig(A) =
0 AN-1 0 h(An-1) 0 On_1
N Filtered Py h Now we parameterize by 6 l
fout ()\l) — f()\l)h()\l> (learnable!)

0 =100, ,0n_1] €RY
(Convolution theorem: [))]

Convolution in the original domain Notice that the parameters have
= Product in the Fourier domain) the same size as the input N

Localizing graph filters

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Polynomial filter
) ho(A) = 0o + 1A + 05 A% + - - O AETH
0 0 K—1 o N | .
o) ' A We have the curve f(z) = €” in blue, and a Polynomial Approximation with equation
ho(A) = . Alternative = y: A 4@) =1+2+ =224 ‘11 %J.l =% in green,
0 On_1 formulation E—0 S ’
—) l y SA /
K
l 0:[907"'79K—1]€R >
6 =10, - ,0N_1] € RN Local filter (K <M o 57 o 5 g
Global filter /
l dae
" . | \J
To calculate A", we calculate up to L”.
K-1 K-1 K-1
ho(A) =Y O:A* Uhg(A)UTz=U[> A" | Uz =D 6L |
Local filter (K <) Now think of our original graph convolution, ...this!
which becomes... UUT — 1

Polynomial approximation (right): https://www.expii.com/t/what-is-a-polynomial-approximation-317

Efficient implementation of local graph filters

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

» But calculating Ekstill seems heavy...

Polynomial filter Idea
0 .) 1. We can represent polynomials with Chebyshev expansion
ho(A) =01+ 01 A + OoA% + - O AET! 2. Chebyshev expansion can be efficiently calculated via recursive relation
K1 3. Also, they are superior than polynomial basis since its orthogonal
=) O4AF K—1
4 k
! ho(A) =) OuA
l k=0
¥ Replace to...
K—1
0=1[0o, - ,0k_1] € R®
00, ,] ho(A) = S 0T (A)

Local filter (K <N)

where...
I T =1
2
To calculate A¥, we calculate up to cF Efficient! | 11 = x O(N) — C’)(K|5\)
Ty = 22T 1 —Tk—2

k=0 Chebyshev polynomials

Efficient implementation of local graph filters

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

def forward([docs])
self,
x: Tensor,

conv.ChebConv S s e
! | edge_weight: OptTensor = None,
batch: OptTensor = None,

lambda_max: OptTensor = None,

) => Tensor:
class ChebConv (in_channels: int, out_channels: int, K: int, normalization: Optional[str] = 'sym’,

bias: bool = True, “*kwargs) [source] edge_index, norm = self._ norm__(
edge_index,
Bases: MessagePassing x.size(self.node_dim),

edge_weight,
self.normalization,
The chebyshev spectral graph convolutional operator from the “Convolutional Neural Networks lambda_max,
. - . . dtype=x.dtype,
on Graphs with Fast Localized Spectral Filtering” paper. Batelebatel.

)

K
r_ (k) (k) Tx_ 0 = x
X o Z Z @ Tx_1 = x # Dummy.
k=1 out = self.lins[0](Tx_0)
(k] . . # propagate_type: (x: Tensor, norm: Tensor)
where Z'*) is computed recursively by U5 Aah et i)
Tx_1 = self.propagate(edge_index, x=x, norm=norm)
z(l) - X out = out + self.lins[1](Tx_1)
(2) _71 . for lin in self.lins[2:]:
Z =L-X Tx_2 = self.propagate(edge_index, x=Tx_1, norm=norm)
(k) _ o T .mp(k-1) (k—2) T2 = 2. * Tx_2 - Tx_0
Z =2-L-Z —Z out = out + lin.forward(Tx_2)
Pl B 4 B o BN)

2L

A L if self.bias is not None:

max :
out = out + self.bias

and L denotes the scaled and normalized Laplacian

return out

A simple example to showcase the locality

Application of ChebNet to the NEIGHBORSMATCH (Alon & Yahav, 2021) problem

A modified NEIGHRBORSMATCH probem Performance: K vs. depth
Example (Class label 1)

-0.5

-04

-0.3

-0.2

1 1 1 1 |
1 2 3 4 5 6
Depth

 Target: Root node (red)’s label * Use asingle ChebConv layer

« The leaf node’s node feature (1in the example) is the root node’s * The model’s locality (K) should at least match the minimum depth
label required by the NEIGHBORSMATCH problem.

 The rest of the node’s feature are completely irrelevant * Since the problem is very easy to solve (as long as the

« The model MUST be able to aggregate at least 4-hop local information is properly gathered), the performance is 100% or
neighbor’s information. near 1/(# of classes)%.

Alon & Yahav, On the bottleneck of graph neural networks and its practical implications, ICLR 2021
For more reading on this simple experiment, go to: https://jordan7186.github.io/blog/2022/ChebConv/

Revisiting GCNs, but in the original author’s way

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

2907530, %

—
= 1+ ==t == 2 FAST APPROXIMATE CONVOLUTIONS ON GRAPHS
AX = ==
/ ﬁ - In this section, we provide theoretical motivation for a specific graph-based neural network model
01 1 1\ (o= P f(X, A) that we will use in the rest of this paper. We consider a multi-layer Graph Convolutional
‘ 1 01 0)f== ‘ q Network (GCN) with the following layer-wise propagation rule:
L 110 0f|== G S 1 x=_ 1
01 11 100 0) \e=m 1+ e HOD = o(D-2AD-HOW®) . @
1 010 - = MLP . , . _) _ _
A= 1100 —— e — Here, A = A + Iy is the adjacency matrix of the undirected graph G with added self-connections.
100 0 I is the identity matrix, D;; = Y A;; and W) is a layer-specific trainable weight matrix. o(-)
denotes an activation function, such as the ReLU(-) = max(0, -). H") € RV*P is the matrix of ac-
tivations in the I layer; H(®) = X. In the following, we show that the form of this propagation rule
can be motivated' via a first-order approximation of localized spectral filters on graphs (Hammond
Resolution to problem 1 Resolution to problem 2 etal., 2011; Defferrard et al., 2016).
Add self-loops to each node Normalization of A

2.1 SPECTRAL GRAPH CONVOLUTIONS

Neighbor count: 3
oo We consider spectral convolutions on graphs defined as the multiplication of a signal z € RY (a
(‘ ‘ o) scalar for every node) with a filter gy = diag(f) parameterized by § € RY in the Fourier domain,

Neighbor count: 4

0 S
Neighbor count: 3 - D= 0 1.e.: .
000 2 goxx=UggU 'z, 3

Neighbor count: 2
where U is the matrix of eigenvectors of the normalized graph Laplacian L = Iy — D~ IAD": =

1 i % \/Lﬁ ﬁ UAUT, with a diagonal matrix of its eigenvalues A and U "z being the graph Fourier transform
0 - S of z. We can understand gy as a function of the eigenvalues of L, i.e. go(A). Evaluating Eq. 3 is
0 A=p-2ap-12= | V12 1‘ i computationally expensive, as multiplication with the eigenvector matrix U is O(N?). Furthermore,
3 3
0 0

—
S5
- o
wi= o

We are now ready to follow the original author’s motivation for GCN.
But keep in mind that all of the previous explanations are still intact. It is still the same model.

Revisiting GCNs, but in the original author’s way

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

We now understand the first part of Section 2.1.

2.1 SPECTRAL GRAPH CONVOLUTIONS (D: We are assuming a global filter with N parameters.

We consider spectral convolutions on graphs defined as the multiplication of a signal z € RY (a
scalar for every node) with a filter gy = diag(6) parameterized by § € R¥ in the Fourier domain,
©

1.e.:

goxz=UgeU 'z, 3)

where U 1s the matrix of eigenvectors of the normTalJ_zI:d graph Laplacian L = Iy — D™ 2 AD™ 3 =
UAU T, with a diagonal matrix of its eigenvalues A land U " x being the graph Fourier transform
of z. We can understand gy as a function of the eigenvalues of L, i.e. gg(A).
@
(2): Use the original eigenvalues as a basis of some |
approximation, then we can learn the coefficients.

1. Initial graph signal on every node

2. Send the signal to the frequency domain (Fourier)

3. Apply the (learnable) filter function (Equalizer!)

4. Send the edited signal back to the original domain (inverse Fourier)

As we have seen, this idea has been
extensively employed by ChebConv

Revisiting GCNs, but in the original author’s way

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

The next part is now also familiar to us...

Evaluating Eq. 3 is
computationally expensive, as multiplication with the eigenvector matrix U is O(NN?). Furthermore,
computing the eigendecomposition of L in the first place might be prohibitively expensive for large

~ graphs. To circumvent this problem, it was suggested in Hammond et al. (2011) that go(A) can be
well-approximated by a truncated expansion in terms of Chebyshev polynomials Ty (z) up to K@
order:

K
k=0
with a rescaled A = ﬁA — In. Amax denotes the largest eigenvalue of L. 8’ € R¥ is now a

vector of Chebyshev coefficients. The Chebyshev polynomials are recursively defined as Ty (x) =
20T _1(x) — Tx—2(x), with Th(z) = 1 and T3 (z) = z. The reader is referred to Hammond et al.

_ (2011) for an in-depth discussion of this approximation.

Revisiting GCNs, but in the original author’s way

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

The next part is now also familiar to us...

Going back to our definition of a convolution of a signal x with a filter gg:, we now have:
K
gogr * T = Z e;ch(L)CB , (5)
k=0

with L = »o—L — In; as can easily be verified by noticing that (UAU ")* = UA*U . Note that

this expression is now K-localized since it is a K™-order polynomial in the Laplacian, i.e. it depends
only on nodes that are at maximum K steps away from the central node (K "™-order neighborhood).
The complexity offevaluating Eq. 5 is O(|€]), i.e. linear in the number of edges. Defferrard et al.
(2016) use this K'-localized convolution to define a convolutional neural network on graphs.

In other words, each node requires up to K-hop local neighborhood
information to capture up to K-th complex patterns.

Revisiting GCNs, but in the original author’s way

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

In Section 2.2, the authors start to introduce the ‘deep learning’ style motivations

2.2 LAYER-WISE LINEAR MODEL Let’s consider the extremely simplified case as a single layer,

and let the designer choose how much layer to stack.
A neural network model based on graph convolutions can therefore be built by stacking multiple\ .
i . : - - Polynomial filter
convolutional layers of the form of Eq. 5, each layer followed by a point-wise non-linearity. Now, ,

imagine we limited the layer-wise convolution operation to K = 1 (see Eq. 5), i.e. a function that is ho(A) = '901 1 O,A +M1

linear w.r.t. L and therefore a linear function on the graph Laplacian spectrum.

In this linear formulation of a GCN we further approximate \y.x ~ 2, as we can € at neural
network parameters will adapt to this change in scale during training. ese approximations
Eq. 5 simplifies to:

gor %z 04z + 0, (L — In)z|=0ba —0,D 3 AD %z, ©6)

with two free parameters 6, and #;. The filter parameters can be shared over the whole graph.
Successive application of filters of this form then effectively convolve the k™-order neighborhood of
a node, where k is the number of successive filtering operations or convolutional layers in the neural
network model.

Revisiting GCNs, but in the original author’s way

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

...which leads us to the final (and familiar) GCN layer.

Do we even need to differentiate 96 and 9/1 ? Let’'s combine them to a single parameter.
In practice, it can be beneficial to constrain the number of parameters further to address overfitting
and to minimize the number of operations (such as matrix multiplications) per layer. This leaves us
with the following expression:

gg*me(IN—I—D_%AD_%)x, @)

with a single parameter § = 6 = —0]. Note that Iy + D=2 AD™= now has eigenvalues in
the range [0, 2]. Repeated application of this operator can therefore lead to numerical instabilities
and exploding/vanishing gradients when used in a deep neural network model. To alleviate this
problem, we introduce the following renormalization trick: In + D™ sAD 2 — D 2 AD" 2, with
A = A+IN andﬁu = ijziij.

We can generalize this definition to a signal X € RY¥*¢ with C input channels (i.e. a C-dimensional
feature vector for every node) and F' filters or feature maps as follows:

Z=D"2AD X0 (8)

GCNs: Let’s be more efficient then ChebConv

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

Now the convolution (per layer) is modeled as:
f(I + D~1/2AD~1/?)

| _

Eigenvalue: Eigenvalue:
1. Always set K= 2 (Up to linear term) [0,1] [0,1]
1 \ T
h9<A) — Z O0r T (A) = 0o + 01 A Eigenvalue: [0,2]
k=0 - Stacking multiple layers may cause explosion of eigenvalue

(Numerical instability)

. - New normalization is needed to keep in [0,1]
2. Instead, stack multiple layers

l renormalization

3. Use normalized Laplacians trick

L=DY2AD1/2 A=A+1
I+ D 1/2AD Y2 5 D-1/2AD1/2

Final convolution layer

o(D-V/2AD-1/20)

Takeaways

1. Graph Fourier Transform: Start with the generalized concept of Fourier transform, everything else is the same.
2. ChebNet/ ChebConv: A learnable, localized filter for graphs
3. GCN: Push the simplification of graph filters to the extreme, compensate by stacking multiple layers.

*If you are interested in the actual efficiency between ChebNet vs. GCN, check out
https://jordan7186.github.io/blog/2022/Efficiency_Comparison/

*Highly recommended reading (for follow-up work and great summary):
Wang & Zhang, How powerful are spectral graph neural networks, ICML 2022

Thank you!

Please feel free to ask any questions :)
Jjordan/186.github.io

37

