


Before going in…. 2

* Presentation slides are available at:
(jordan7186.github.io/presentations/)

Introduction to graph mining and graph neural networks
(Basic overview to kick things off)

On the representational power of graph 
neural networks

A graph signal processing viewpoint of 
graph neural networks

On the problem of oversmoothing and 
oversquashing

Fundamental topics on graph neural networks

Towards application of graph neural networks

Towards efficient graph learning Explainable graph neural networks

Wrap-up: Message passing all the way up
(Up-to-date comprehensive survey on GNN archtiectures)

(Some of the topics may change in the future for a better alternative)



Objectives 3

1. Preliminary: Singal processing (3blue1brown)
2. Understanding of graph signals & graph Fourier transform
3. Understanding the formulation of ChebNet
4. Re-reading GCN, understanding in the original author’s way



4

Preliminary: Signal processing



Signal processing & filtering 5

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

Observed signal

Signal 1

Signal 2

Signal 3

Signal 4

Fourier transforms can be used to analyze signals

Observed signal
with multiple frequencies

Individual signals
with single frequencies



Signal processing & filtering 6

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

2 Hz

3 Hz

Fourier transform

Fourier transform

Time domain Frequency domain



Signal processing & filtering 7

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

Imagine winding the wave in a circle in a 2D plane in different frequencies

Observation
Something unique happens when the winding 

frequency exactly matches the signal frequency

How to measure this?

3 
be

at
s 

/ s
ec

0
.5

 c
yc

le
s 

/ s
ec

3 
cy

cl
es

 / 
se

c

0
.2

0
 c

yc
le

s 
/ s

ec



Signal processing & filtering 8

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

: Center of mass
Measurement of the distance between the 

origin and center of mass

Imagine winding the wave in a circle in a 2D plane in different frequencies

Measurement of the distance between the origin and center of mass



Low-pass filtering 9

3Blue1Brown, https://www.youtube.com/watch?v=spUNpyF58BY

1. Fourier transform 3. Inverse Fourier transform

2. Reduce high-frequency noise

*David I Shuman et al., The Emerging Field of Signal Processing on Graphs



Additional linear algebra: Spectral decomposition 10

Slide from: https://www.slideshare.net/CeniBabaogluPhDinMat/5-linear-algebra-for-machine-learning-singular-value-decomposition-and-principal-component-analysis-147828329

We can also rearrange in an ascending order, just 
swap the corresponding eigenvectors accordingly.

• When decomposing the (symmetric) adjacency 
matrix, the eigenvalues are real.

• The eigenvalues are usually ordered.



11

Understanding of graph signals & graph Fourier transforms



How should we think of signals on graphs? 12

We can imagine assigning a single value to each vertex
Think of 1-dimensional feature matrix as a function

We will consider a simple 1D node features, which can be easily extended to muti-dimensional case 



Generalization of Fourier transforms to graphs 13

Fourier transform = Inner product with some function
Some function = complex expoenetials?

①

①

②
②

③ ③

Some function = Eigenfunction of the Laplace operator

Roughly, the Laplace operator measures the 
local difference between the function and average.

Eigenfunction



Generalization of Fourier transforms to graphs 14

Conclusion of the previous slide:
Fourier transform is the inner product between the target function and the eigenfunction of the Laplace operator.

Graph Laplacian

Laplace operator measures the 
local difference between the function and average.

Graph signal!
(# of nodes = N)

This part is the 
same from before

This part is 
different because 
now its discrete And we can just get the eigenvectors of the graph 

Laplacian via spectral decomposition.



Complementary note 1: On the physical intuition of the graph Laplacian 15

Why is Laplacian related to measuring the difference between the function and average?

Need some further generalizations of mathematical concepts… “Discrete calculus”

Definition 1. Edge derivative at e=(i, j)

Definition 2. Graph gradient at vertex i

Definition 3. Local variation at vertex i

We can calculate the total variation of the whole graph as
the sum of local variation (squared) for all nodes in the graph:

which is

….So we can at least understand why the graph Laplacian is useful to 
capture the patterns of the graph signal. It measures how much the signal 
differs locally, eventually containing all information on variation of signals.



Complementary note 2: Analogy of eigenfunctions across frequencies 16

The eigenfunction of the Laplacian

Higher

Lower

Eigenfunction represents slow-oscillating patterns (low frequency)

Eigenfunction represents fast-oscillating patterns (high frequency)

Used to capture macro-patterns

Used to capture micro-patterns (details / noise)

Is this also analogous to graph Fourier basis?



Complementary note 2: Analogy of eigenfunctions across frequencies 17

Concrete example 1

Matrix of eigenvectors Lowest two 
frequencies

(eigenvalues)

Corresponding 
eigenvalues

Notice that the trivial eigenpair reveal the most macro pattern in a graph: 
Number of connected compoents (“blobs”)



Complementary note 2: Analogy of eigenfunctions across frequencies 18

Concrete example 2

Lowest two 
frequencies

(eigenvalues)

1) Notice that there is only one trivial eigenpair since 
the graph is one giant connected component

2) Still, also notice that the first non-trivial 
eigenvectors returns a ‘soft’ community assignment, 
which is the the next macro-pattern.
(HIGHLY incourage to read spectral clustering [1])

Community 1

Community 2

[1] Luxburg, A Tutorial on Spectral Clustering



Complementary note 2: Analogy of eigenfunctions across frequencies 19

Some further examples… (external slide)

Slides from: Elif Vural, “Spectral Graph Theory and Graph Signal Processing”, 2021, 
https://indico.truba.gov.tr/event/56/contributions/456/attachments/118/280/CizgeOkulu_ElifVural.pdf



…Coming back, completing the full graph Fourier transformation 20

Fourier transform

Original domain (time)

Note that the smoothness of the first graph is reflected in the 
high signal of low eigenvalue/frequencies

* Low frequency = smooth, little variance

In the third graph, high signals of eigenvalue/frequencies 
start to appear

* High frequency = rapid oscillation, high variance

Frequency domain

Fourier transform

Original domain (vertex)

Frequency domain

positive 
values

negative 
values

High freq.Low freq.



…Coming back, completing the full graph Fourier transformation 21

(Graph) Fourier transform

Filtering (Apply some function here)

Inverse (Graph) Fourier transform

Send f in vertex space to frequency space

Apply a filtering function h to eigenvalues

Send back to vertex space

Image: https://www.allaboutcircuits.com/technical-articles/low-pass-filter-tutorial-basics-passive-RC-filter/



22

Understanding the formulation of ChebNet & GCN



Application of convolution (filters) to graphs 23

Image source: Left - https://techblog-history-younghunjo1.tistory.com/125 Right - https://anhreynolds.com/blogs/cnn.html

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

1. Spectral formulation: Extend the formulation of graph signal processing
2. Strictly localized filters: Design a local filter localized in K hop from the central vertex

3. Low computational complexity: Expensive eigenvalue decomposition (spectral decomposition) is not needed

CNNs were successful because of local parameterized filters

Convolution theorem: Multiplication in the spectral space = Convolution in the original space

Localized = the kernel is smaller than the original space
(for example, in the left figure, the kernel is 3 by 3, which is smaller than the image 5 by 5)

Parameterized (Learnable) filter



Localizing graph filters 24

Apply a filtering function h to eigenvalues

Graph in spectral domain

Filtered by h Now we parameterize by θ
(learnable!)

Notice that the parameters have 
the same size as the input N

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

(Convolution theorem: 
Convolution in the original domain 
= Product in the Fourier domain)



Localizing graph filters 25

Alternative 
formulation

Global filter

Local filter (K < N)

Polynomial filter

To calculate      , we calculate up to     .

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Polynomial approximation (right): https://www.expii.com/t/what-is-a-polynomial-approximation-317

Local filter (K < N) Now think of our original graph convolution, 
which becomes…

…this!



Efficient implementation of local graph filters 26

Local filter (K < N)

Polynomial filter

But calculating      still seems heavy…

Idea
1. We can represent polynomials with Chebyshev expansion
2. Chebyshev expansion can be efficiently calculated via recursive relation
3. Also, they are superior than polynomial basis since its orthogonal

Replace to…

where…

Efficient!

Chebyshev polynomials

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

To calculate      , we calculate up to     .



Efficient implementation of local graph filters 27

Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering



A simple example to showcase the locality 28

Application of ChebNet to the NEIGHBORSMATCH (Alon & Yahav, 2021) problem

Alon & Yahav, On the bottleneck of graph neural networks and its practical implications, ICLR 2021
For more reading on this simple experiment, go to: https://jordan7186.github.io/blog/2022/ChebConv/

A modified NEIGHRBORSMATCH probem

• Target: Root node (red)’s label
• The leaf node’s node feature (1 in the example) is the root node’s 

label
• The rest of the node’s feature are completely irrelevant
• The model MUST be able to aggregate at least 4-hop local 

neighbor’s information.

• Use a single ChebConv layer
• The model’s locality (K) should at least match the minimum depth 

required by the NEIGHBORSMATCH problem.
• Since the problem is very easy to solve (as long as the 

information is properly gathered), the performance is 100% or 
near 1/(# of classes)%.



Revisiting GCNs, but in the original author’s way 29

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

We are now ready to follow the original author’s motivation for GCN.
But keep in mind that all of the previous explanations are still intact. It is still the same model.

MLP

Aggregation Transform

Add self-loops to each node

Resolution to problem 1 Resolution to problem 2

Normalization of    :

Neighbor count: 3

Neighbor count: 4

Neighbor count: 3

Neighbor count: 2



Revisiting GCNs, but in the original author’s way 30

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

We now understand the first part of Section 2.1.

①

①: We are assuming a global filter with N parameters.

1. Initial graph signal on every node

2. Send the signal to the frequency domain (Fourier)

3. Apply the (learnable) filter function (Equalizer!)

4. Send the edited signal back to the original domain (inverse Fourier)

②
②: Use the original eigenvalues as a basis of some 
approximation, then we can learn the coefficients.



Revisiting GCNs, but in the original author’s way 31

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

The next part is now also familiar to us…

As
 w

e 
ha

ve
 s

ee
n,

 th
is

 id
ea

 h
as

 b
ee

n 
ex

te
ns

iv
el

y 
em

pl
oy

ed
 b

y 
C

he
bC

on
v



Revisiting GCNs, but in the original author’s way 32

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

The next part is now also familiar to us…

In other words, each node requires up to K-hop local neighborhood 
information to capture up to K-th complex patterns.



Revisiting GCNs, but in the original author’s way 33

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

In Section 2.2, the authors start to introduce the ‘deep learning’ style motivations

…

Polynomial filter

Let’s consider the extremely simplified case as a single layer, 
and let the designer choose how much layer to stack.



Revisiting GCNs, but in the original author’s way 34

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

…which leads us to the final (and familiar) GCN layer.

Do we even need to differentiate       and      ? Let’s combine them to a single parameter.



GCNs: Let’s be more efficient then ChebConv 35

Kipf & Welling, Semi-supervised Classification with Graph Convolutional Networks

Now the convolution (per layer) is modeled as:

Eigenvalue: 
[0,1]

Eigenvalue: 
[0,1]

Eigenvalue: [0,2]
- Stacking multiple layers may cause explosion of eigenvalue

(Numerical instability)
- New normalization is needed to keep in [0,1]

renormalization 
trick

Final convolution layer

1. Always set K = 2 (Up to linear term)

2. Instead, stack multiple layers

3. Use normalized Laplacians



Takeaways 36

1. Graph Fourier Transform: Start with the generalized concept of Fourier transform, everything else is the same.

2. ChebNet / ChebConv: A learnable, localized filter for graphs

3. GCN: Push the simplification of graph filters to the extreme, compensate by stacking multiple layers.

*If you are interested in the actual efficiency between ChebNet vs. GCN, check out
https://jordan7186.github.io/blog/2022/Efficiency_Comparison/

*Highly recommended reading (for follow-up work and great summary):
Wang & Zhang, How powerful are spectral graph neural networks, ICML 2022



37

Thank you!
Please feel free to ask any questions :)

jordan7186.github.io


